Sampling Variability and Trend Monitoring

North American Environmental Field Conference Tampa, Florida January 15, 2007 Low noise data

Mr. Sandy Britt, PG, CHG ProHydro, Inc. Fairport, New York Sandy.Britt@ProHydroInc.com

THE SNAP SAMPLER

Equipment Design Award Winner

What are sources of data error and variability?

Laboratory? Hold time Cross-contamination Manual vs. autosampler

Collection Method?

Bail purge and sample Pump purge and sample Low flow purge and sample Passive (no-purge) sampling

Sample Handling? Bottle filling Transport

Flow-weighted averaging effect

Britt, SL, 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand Tank Well Model. *Ground Water Monitoring and Remediation 25,* no. 3 p.73-81

Active (Purge) Sampling Methods

- Water chemistry changes as a well is pumped
- V Why does chemistry change?
- ∇ "Stagnant" water?Or...
- A varying mix of water entering the pump?

Traditional and Low Flow Purging <u>Static</u> vs. <u>Dynamic</u>

Varljen, *et al.*, 2006, Numerical Simulations to Assess the Monitoring Zone Achieved during Low-Flow Purging and Sampling, GWMR, 26: p. 44-52

Analysis of <u>Steady-State</u> purging

<u>Hydraulics</u> controls flow, including water coming from beyond the screen zone

But <u>purge time</u> controls what water discharges from the pump

How long does purge equilibration take?

Not too long????

Achieving true "stability" (i.e. flow-weighted-average) depends on:

- ∇ Well diameter
- V Well length
- ∇ Pump position
- ∇ Contaminant position
- ∇ Other heterogeneity

Quick Calculation:

4" well, 10 foot screen, pump in the middle, 250 ml/min purge rate

(2.5L/ft)*5 ft/(0.25L/min) = 50 min (plug flow)

>50 minutes

What about Sampling Passively?

What is Passive Sampling?

<u>Sampling without purging</u> >Deploy in advance >Relies on "passive" flushing

Examples:

Polyethylene Diffusion Bag sampler (USGS) Rigid Porous Pipe sampler (USGS) Dialysis Membrane Sampler (USGS) Gore Sorber (WL Gore)

Snap Sampler (ProHydro)

Passive Equilibration Can Limit Variables

- Natural flow delivered to well
- Ambient (passive) mixing according to native flow dynamics
- Stratification testing?
- <u>Sample from same position</u> (the key to consistency)

The Snap Sampler is a <u>dedicated</u> passive sampling system

- Deploy double-ended bottles in an open position.
- Sample after short or long residence time in the well— 1-2 weeks or 3 or 6 months
- Mechanical or electric trigger closes bottles <u>in situ</u>.
- Sample transfer is not required at the well head for VOCs -No exposure to air

How the Snap Sampler works....

• Load & Set Snap Caps

How the Snap Sampler works...continued

• Mechanical or electric trigger

- Modular samplers allow up to 4 bottles per trigger
- Multiple triggers can be used for multiple sampling depths

Seal in situ,

reduce surface handling

In Situ:

- Sample at the same position each sampling event
- Sample collection takes place submerged in the well

<u>No well-head sample transfer</u> <u>required</u>

Example data

- Very good correlations
- VOCS, 1,4-dioxane, anions

Parsons, 2005, McClellan Air Force Base, Sacramento, CA

Spotting data trends may depend on consistency of your collection method...

de a

Many variables for purge: actual concentration, pump position, pumping duration, stability criteria requirements, wind, temperature, site surface or ambient air contamination, bottle fill rate, pour technique, speed of bottle closure, filtration, transport, analytical variability.

Fewer variables with <u>in situ sealed</u> <i>samples: actual concentration, transport, analytical variability.

Interpretation of simple data trends is easier with less random error

Illustration only, not site data

Concentration

Interpretation of more complicated data trends is easier with less random error

Illustration only, not site data

Interpretation of very complicated data trends is easier with less random error

TCE Example, site in Southern California

Purge

Sealed in situ

Range: <u>5.6 to 134</u> Avg. RPD Q to Q: <u>100%</u> Median RPD Q to Q: <u>94%</u>

 Range:
 39.7 to 103

 Avg. RPD
 Q to Q:
 36%

 Median RPD
 Q to Q:
 35%

TCE Example, Quarter to Quarter change

- Directional dynamic unchanged
- Quarterly concentration change less exaggerated

Overall statistics indicate differences in methods:

Purge

n = 100 comparison pairs Mean RPD Q to Q: <u>66%</u> Median RPD Q to Q: <u>51%</u> Sealed *in situ* n = 81 comparison pairs Mean RPD Q to Q: 48% Median RPD Q to Q: 37%

Mean % change Q-Q: <u>298%</u> Median % change: Q-Q: <u>71%</u>

Mean % change Q-Q: <u>138%</u> Median % change: Q-Q: <u>55%</u>

Note: differences include the <u>actual changes</u> in concentration...

Summary

- Reduced variation possible through consistent downhole passive sampling method
- In Situ sealed samples avoid error from surface handling

"Technical Innovation with Environmental Responsibility"

MAD	DE IN	THE
U.	S.	Α.

- Passive method adds consistency by avoiding variables introduced during purge step
- Data trend more closely reflects downhole condition

WWW.SNAPSAMPLER.COM